Solving geoinformatics parametric polynomial systems using the improved Dixon resultant

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving parametric polynomial systems

We present a new algorithm for solving basic parametric constructible or semi-algebraic systems like C = {x ∈ C, p1(x) = 0, , ps(x) = 0, f1(x) 0, , fl(x) 0} or S = {x ∈ R, p1(x) = 0, , ps(x) = 0, f1(x)> 0, , fl(x)> 0}, where pi, fi ∈Q[U , X], U = [U1, , Ud] is the set of parameters and X = [Xd+1, , Xn] the set of unknowns. If ΠU denotes the canonical projection onto the parameter’s space, solvi...

متن کامل

On Solving Parametric Polynomial Systems

Border polynomial and discriminant variety are two important notions related to parametric polynomial system solving, in particular, for partitioning the parameter values into regions where the solutions of the system depend continuously on the parameters. In this paper, we study the relations between those notions in the case of parametric triangular systems. We also investigate the properties...

متن کامل

Solving Parametric Polynomial Systems by RealComprehensiveTriangularize

In the authors’ previous work, the concept of comprehensive triangular decomposition of parametric semi-algebraic systems (RCTD for short) was introduced. For a given parametric semi-algebraic system, say S, an RCTD partitions the parametric space into disjoint semialgebraic sets, above each of which the real solutions of S are described by a finite family of triangular systems. Such a decompos...

متن کامل

Complexity of solving parametric polynomial systems

We present three algorithms in this paper: the first algorithm solves zero-dimensional parametric homogeneous polynomial systems with single exponential time in the number n of the unknowns, it decomposes the parameters space into a finite number of constructible sets and computes the finite number of solutions by parametric rational representations uniformly in each constructible set. The seco...

متن کامل

A note on Solving Parametric Polynomial Systems

Lazard and Rouillier in [9], by introducing the concept of discriminant variety, have described a new and efficient algorithm for solving parametric polynomial systems. In this paper we modify this algorithm, and we show that with our improvements the output of our algorithm is always minimal and it does not need to compute the radical of ideals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Earth Science Informatics

سال: 2018

ISSN: 1865-0473,1865-0481

DOI: 10.1007/s12145-018-0366-2